
Efficient Hashing using the AES Instruction Set

Joppe Bos1 Onur Özen1 Martijn Stam2

1Ecole Polytechnique Fédérale de Lausanne

2University of Bristol

Nara, 1 October 2011



Outline

1 Introduction
AES and Hash Functions
Blockcipher-Based Schemes to Consider
Caveat Emptor

2 Intel’s AES Instruction Set
AES and Rijndael
AES-NI
Old Lessons from Encryption Modes
New Lessons for Hash Functions

3 Hash Function Implementations
Case Study I: Davies–Meyer
Case Study II: Quadratic-Polynomial-Based
Overview of Results

4 Conclusion



Outline

1 Introduction
AES and Hash Functions
Blockcipher-Based Schemes to Consider
Caveat Emptor

2 Intel’s AES Instruction Set
AES and Rijndael
AES-NI
Old Lessons from Encryption Modes
New Lessons for Hash Functions

3 Hash Function Implementations
Case Study I: Davies–Meyer
Case Study II: Quadratic-Polynomial-Based
Overview of Results

4 Conclusion



Introduction AES and Hash Functions

Motivation
AES-based vs. AES-instantiated Blockcipher-based

Vor
tex

Vor
tex

AES-Based Hashing [BBGR09]
(several SHA-3 candidates)

. X E Y

KM

V Z = HE (M,V )

mn

rn rn

Use AES as a blackbox
(blockcipher-based hashing)

AES in a nutshell
The US encryption standard (standardized by NIST in 2001)
128-bit block-size version of the Rijndael blockcipher
(designed by Daemen & Rijmen)



Introduction AES and Hash Functions

Motivation
AES-based vs. AES-instantiated Blockcipher-based

Vor
tex

Vor
tex

AES-Based Hashing [BBGR09]
(several SHA-3 candidates)

. X E Y

KM

V Z = HE (M,V )

mn

rn rn

Use AES as a blackbox
(blockcipher-based hashing)

Why is this interesting?
1 AES-NI Instruction Set promises considerable speedup
2 Blockcipher-based hashing relatively well understood

with many security proofs in ideal cipher model (ICM)



Introduction AES and Hash Functions

Blockcipher-Based Hashing
The principal idea

. X E Y

KM

V Z = HE (M,V )

E : {0, 1}k × {0, 1}n → {0, 1}n

k

n nn

k

n

Blockcipher with k-bit key, operating on n-bit blocks.
Compression function HE from n + k bits to n bits
(input consists of k bits message and n bits chaining variable).



Introduction AES and Hash Functions

Blockcipher-Based Hashing
Using AES

. X E Y

KM

V Z = HE (M,V )

k

n n

Blockcipher Block-size Key-size Number of
E n (bits) k (bits) Rounds

AES-128 128 128 10
AES-256 128 256 14

Rijndael-256 256 256 14



Introduction AES and Hash Functions

Blockcipher-Based Hashing
The principal idea, revisited

. X E Y

KM

V Z = HE (M,V )

E : {0, 1}k × {0, 1}n → {0, 1}n

k

n nn

k

n

Examples include MD5, SHA family, plus the (generic) PGV
compression functions.

For instance the Davies–Meyer construction.



Introduction AES and Hash Functions

Blockcipher-Based Hashing
The principal idea, revisited

M

V E Zn

k

n

Examples include MD5, SHA family, plus the (generic) PGV
compression functions.
For instance the Davies–Meyer construction.



Introduction AES and Hash Functions

Blockcipher-Based Hashing
The principal idea, revisited

M

V E Zn

k

n

Assuming E is ideal, Davies–Meyer is optimally collision resistant.

When instantiated with e.g. AES-256,
it takes 264 operations to find a collision. Insufficient!



Introduction AES and Hash Functions

Blockcipher-Based Hashing
The principal idea, revisited

M

V E Z
128

256

128

Assuming E is ideal, Davies–Meyer is optimally collision resistant.
When instantiated with e.g. AES-256,
it takes 264 operations to find a collision. Insufficient!



Introduction AES and Hash Functions

Blockcipher-Based Hashing
The principal idea, revisited

. X E Y

KM

V Z = HE (M,V )

E : {0, 1}cn × {0, 1}n → {0, 1}n

mn

rn rnn

cn

n

Blockcipher with cn-bit key, operating on n-bit blocks.
Compression function HE from (r + m)n bits to rn bits
(using multiple calls to E ) where r > 1.



Introduction AES and Hash Functions

Blockcipher-Based Hashing
The principal idea, revisited

. X E Y

KM

V Z = HE (M,V )

E : {0, 1}cn × {0, 1}n → {0, 1}n

mn

rn rn

Blockcipher with cn-bit key, operating on n-bit blocks.
Compression function HE from (r + m)n bits to rn bits
(using multiple calls to E ) where r > 1.



Introduction AES and Hash Functions

Blockcipher-Based Hashing
Using AES

. X E Y

KM

V Z = HE (M,V )

mn

rn rn

Blockcipher Block-size Key-size Number of
E (bits) (bits) Rounds

AES-128 128 128 10
AES-256 128 256 14

Rijndael-256 256 256 14



Introduction AES and Hash Functions

Iterated Hash Functions
Merkle-Damgård Transformation

M1 M2 M`

V0 H H H Z = V`rn

mn mn mn

rn rn rn

MD-Iteration
From H : {0, 1}(m+r)n → {0, 1}rn to HH : ({0, 1}mn)∗ → {0, 1}rn



Introduction Blockcipher-Based Schemes to Consider

Multi-Block Length Blockcipher-Based Schemes
This Work: A Performance Comparison

Blockcipher Variable-key Fixed-key
Constructions Constructions

AES-128 MDC-2, MJH, LP362
Peyrin et al.(I)

Abreast-DM, Hirose-DBL,
AES-256 Knudsen–Preneel, MJH-Double, n.a.

QPB-DBL, Peyrin et al.(II)
LP231,

Rijndael-256 Davies–Meyer LANE?, Luffa?,
Shrimpton–Stam



Introduction Caveat Emptor

Related Key Attacks (RKA) on AES

The ugly
A formal definition of related key attacks [BK03,AFPW11]

The bad
AES-192 and AES-256 are susceptible to meaningful RKA [BK09,BKN09]

Casts doubt on modelling AES-192 and AES-256 as ideal ciphers.
Davies–Meyer[AES-256] fails optimal security for certain
beyond-birthday properties.

The good
No identified weaknesses against any of the schemes considered in this talk



Introduction Caveat Emptor

Related Key Attacks (RKA) on AES

The ugly
A formal definition of related key attacks [BK03,AFPW11]

The bad
AES-192 and AES-256 are susceptible to meaningful RKA [BK09,BKN09]

Casts doubt on modelling AES-192 and AES-256 as ideal ciphers.
Davies–Meyer[AES-256] fails optimal security for certain
beyond-birthday properties.

The good
No identified weaknesses against any of the schemes considered in this talk



Introduction Caveat Emptor

Related Key Attacks (RKA) on AES

The ugly
A formal definition of related key attacks [BK03,AFPW11]

The bad
AES-192 and AES-256 are susceptible to meaningful RKA [BK09,BKN09]

Casts doubt on modelling AES-192 and AES-256 as ideal ciphers.
Davies–Meyer[AES-256] fails optimal security for certain
beyond-birthday properties.

The good
No identified weaknesses against any of the schemes considered in this talk



Outline

1 Introduction
AES and Hash Functions
Blockcipher-Based Schemes to Consider
Caveat Emptor

2 Intel’s AES Instruction Set
AES and Rijndael
AES-NI
Old Lessons from Encryption Modes
New Lessons for Hash Functions

3 Hash Function Implementations
Case Study I: Davies–Meyer
Case Study II: Quadratic-Polynomial-Based
Overview of Results

4 Conclusion



Intel’s AES Instruction Set AES-NI

AES and Rijndael

(Created by Jeff Moser)



Intel’s AES Instruction Set AES-NI

AES-NI

Goal: Fast and secure AES encryption and decryption
Available Platforms: Intel Westmere-based (2010) and Sandy Bridge
processors (2011), AMD Bulldozer-based processors (2011)

Useful New AES Instructions
• AESENC performs a single round of encryption.
• AESENCLAST performs the last round of encryption.
• AESKEYGENASSIST is used for generating the round keys.

(For decryption available AESDEC, AESDECLAST and AESIMC)

Finally, PCLMULQDQ performs carry-less multiplication of two 64-bit
operands to an 128-bit output.



Intel’s AES Instruction Set Old Lessons from Encryption Modes

Intel AES-NI Sample Library
For Intel Core i5 650 (3.2 GHz with AES-NI).

Key Schedule 1-Encryption 4-Encryption
Blockcipher (Seq. modes) (Par. modes)

cycles (cycles/byte)
AES-128 99.0 (6.2) 64.0 (4.0) 83.2 (1.3)
AES-256 124.5 (7.8) 86.4 (5.4) 108.8 (1.7)

Timing Modes of Encryption [G10,GK10,MMG10]
Refers to CBC, ECB, etc.
Intricate interleaving of AESENC calls.
Key Scheduling is performed only once.
Not included in the encryption timings.



Intel’s AES Instruction Set New Lessons for Hash Functions

AES-NI Timings for Hashing
Extensions (results in cycles, compiled using both gcc and icc)

Major Overhead: Frequent key-scheduling!

Blockcipher 1K 2K 3K 4K 1E 2E 3E 4E
AES-128 97.7 126.1 163.4 226.7 60.2 60.6 67.7 84.7
AES-256 125.5 147.2 202.6 287.2 82.0 83.0 93.6 113.9

Rijndael-256 291.6 316.6 412.6 570.3 182.9 219.2 281.4 352.6

Blockcipher 1K1E 2K2E 3K3E 4K4E 1K2E 1K3E 1K4E
AES-128 107.4 149.2 200.0 269.9 120.1 135.3 137.8
AES-256 152.8 178.1 249.7 337.9 154.0 158.4 164.9

Rijndael-256 285.3 407.5 620.5 867.3 312.0 373.3 463.7



Intel’s AES Instruction Set New Lessons for Hash Functions

AES-NI Timings for Hashing
Extensions (results in cycles, compiled using both gcc and icc)

Major Overhead: Frequent key-scheduling!

Blockcipher 1K 2K 3K 4K 1E 2E 3E 4E
AES-128 97.7 126.1 163.4 226.7 60.2 60.6 67.7 84.7
AES-256 125.5 147.2 202.6 287.2 82.0 83.0 93.6 113.9

Rijndael-256 291.6 316.6 412.6 570.3 182.9 219.2 281.4 352.6

Blockcipher 1K1E 2K2E 3K3E 4K4E 1K2E 1K3E 1K4E
AES-128 107.4 149.2 200.0 269.9 120.1 135.3 137.8
AES-256 152.8 178.1 249.7 337.9 154.0 158.4 164.9

Rijndael-256 285.3 407.5 620.5 867.3 312.0 373.3 463.7



Outline

1 Introduction
AES and Hash Functions
Blockcipher-Based Schemes to Consider
Caveat Emptor

2 Intel’s AES Instruction Set
AES and Rijndael
AES-NI
Old Lessons from Encryption Modes
New Lessons for Hash Functions

3 Hash Function Implementations
Case Study I: Davies–Meyer
Case Study II: Quadratic-Polynomial-Based
Overview of Results

4 Conclusion



Hash Function Implementations Case Study I: Davies–Meyer

Davies–Meyer
Using Rijndael-256, n = k = 256

KS. . . E

Vi

Mi

Vi+1 . . .

k

n

Conventional Implementation
Requires one key-schedule and one encryption call
(possibly round functions interleaved for each call).
The performance can be estimated with 1K1E.



Hash Function Implementations Case Study I: Davies–Meyer

Davies–Meyer
Using Rijndael-256, n = k = 256

KS. . . E

Vi

Mi

Vi+1 . . .

k

n

Conventional Implementation
Requires one key-schedule and one encryption call
(possibly round functions interleaved for each call).
The performance can be estimated with 1K1E.



Hash Function Implementations Case Study I: Davies–Meyer

Davies–Meyer
Using Rijndael-256, n = k = 256

...

Mi KS E

Mi+1 KS

...
...

Mi+j KS

E

E

Vi

Vi+1

Vi+2

Vi+j

Vi+j+1 . . .

. . .

k

k

k

n

n

n

Optimized Implementation (for MD-iteration)
Run the j key-schedules in parallel followed by j encrpytion calls.
j = 4 gives the most efficient result.
The performance can be estimated to be in [4K4E,4K+4×1E].



Hash Function Implementations Case Study I: Davies–Meyer

Davies–Meyer
Results (cycles/byte)

...

Mi KS E

Mi+1 KS

...
...

Mi+j KS

E

E

Vi

Vi+1

Vi+2

Vi+j

Vi+j+1 . . .

. . .

k

k

k

n

n

n

Compression Conventional Optimized
Function Estimate Achieved Speed Estimate Achieved Speed

Davies–Meyer 8.9 8.9 [6.8, 10.2] 8.7



Hash Function Implementations Case Study II: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL
Using AES-256

E Z1

V1

V2 Z2

M

F

n

n

n

n

n

F (M,V1,V2,Z1) = Z1(V2Z1 + V1) + M

Evaluating F
Requires on GF (2n) finite field multiplications.
Relies on the PCLMULQDQ instruction.



Hash Function Implementations Case Study II: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL
Using AES-256

E Z1

V1

V2 Z2

M

F

n

n

n

n

n

F (M,V1,V2,Z1) = Z1(V2Z1 + V1) + M

Conventional Implementation
Calls the (full) compression function iteratively.
Requires one key-schedule, one encryption call followed by two (full)
finite field multiplications.
The performance can be estimated with 1K1E+ε where ε stands for
the time required for multiplications.



Hash Function Implementations Case Study II: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL
Swapping the Inputs

E Z1

V1

M Z2

V2

F

n

n

n

n

n

F (M,V1,V2,Z1) = Z1(V1Z1 + M) + V2

Optimized Implementation (for MD-iteration)
Interleaves the key-scheduling of round i + 1 with the two (sequential)
finite field multiplications of round i .
The predicted performance of QPB-DBL is based on the 1K1E+ε
setting where ε stands for the time required for multiplications.



Hash Function Implementations Case Study II: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL
Results (cycles/byte)

E Z1

V1

M Z2

V2

F

n

n

n

n

n

F (M,V1,V2,Z1) = Z1(V1Z1 + M) + V2

Compression Conventional Optimized
Function Estimate Achieved Speed Estimate Achieved Speed
QPB–DBL 9.5+ ε 15.8 9.5+ ε 14.1



Hash Function Implementations Overview of Results

Our Timings
(cycles/byte)

Algorithm Building
Block

Key
Scheduling

Predicted
Speed Range

Achieved
Speed

Abreast-DM AES-256 two 11.1+ ε 11.21
DM Rijndael-256 one [6.8, 10.2] 8.69
Hirose-DBL AES-256 one, shared 9.6 9.82
Knudsen–Preneel AES-256 four 10.6 10.58
LANE? Rijndael-256 fixed 11.7 11.71
LP231 Rijndael-256 fixed 12.6+ ε 13.04
LP362 AES-128 fixed 11.8+ ε 12.09
Luffa? Rijndael-256 fixed 8.8+ ε 10.22
MDC-2 AES-128 two [9.3, 11.7] + ε 10.00
MJH AES-128 one, shared 6.6+ ε 7.45
MJH-Double AES-256 one, shared 4.1+ ε 4.82
QPB-DBL AES-256 one 9.5+ ε 14.12
Peyrin et al.(i) AES-128 three, shared [12.5, 16.3] 15.09
Peyrin et al.(ii) AES-256 three, shared [7.8, 10.7] 8.75
Shrimpton–Stam Rijndael-256 fixed 12.6 12.39



Outline

1 Introduction
AES and Hash Functions
Blockcipher-Based Schemes to Consider
Caveat Emptor

2 Intel’s AES Instruction Set
AES and Rijndael
AES-NI
Old Lessons from Encryption Modes
New Lessons for Hash Functions

3 Hash Function Implementations
Case Study I: Davies–Meyer
Case Study II: Quadratic-Polynomial-Based
Overview of Results

4 Conclusion



Conclusion

Conclusion
For Intel Core i5 650 (3.2 GHz with AES-NI).

1 Fast instantiations of provably secure bc-based hash functions,
using AES-NI achieving between 4 and 15 cycles per byte.
(vs. SHA-256: 13.90 and SHA-512: 10.47).

2 MJH-Double is the overall speed champion
(but its concrete security bound is lacking).

3 For blockcipher-based compression functions, DM is the fastest
algorithm with optimal security

4 In the permutation-based setting, the fastest is Luffa?.
5 Slightly changing the compression function can lead to performance

benefits without sacrificing provable security.


	Introduction
	AES and Hash Functions
	Blockcipher-Based Schemes to Consider
	Caveat Emptor

	Intel's AES Instruction Set
	AES and Rijndael
	AES-NI
	Old Lessons from Encryption Modes
	New Lessons for Hash Functions

	Hash Function Implementations
	Case Study I: Davies–Meyer
	Case Study II: Quadratic-Polynomial-Based
	Overview of Results

	Conclusion

