Efficient Hashing using the AES Instruction Set

Joppe Bos! Onur Ozen! Martijn Stam?

LEcole Polytechnique Fédérale de Lausanne

2University of Bristol

Nara, 1 October 2011

.(Pf\. =7 University of

ECOLE POLYTECHNIQUE BRISTOL

Outline

@ Introduction
o AES and Hash Functions
o Blockcipher-Based Schemes to Consider
o Caveat Emptor

@ Intel's AES Instruction Set
o AES and Rijndael
o AES-NI
o Old Lessons from Encryption Modes
o New Lessons for Hash Functions

(3 Hash Function Implementations
o Case Study I: Davies—Meyer
o Case Study Il: Quadratic-Polynomial-Based
o Overview of Results

@ Conclusion

Outline

@ Introduction
o AES and Hash Functions
o Blockcipher-Based Schemes to Consider
o Caveat Emptor

Introduction AES and Hash Functions

Motivation
AES-based vs. AES-instantiated Blockcipher-based

rrrrr

AES-Based Hashing [BBGRO09] Use AE_S as a blackbox _
(several SHA-3 candidates) (blockcipher-based hashing)

AES in a nutshell
o The US encryption standard (standardized by NIST in 2001)

o 128-bit block-size version of the Rijndael blockcipher
(designed by Daemen & Rijmen)

Introduction AES and Hash Functions

Motivation
AES-based vs. AES-instantiated Blockcipher-based

M5

V 2 - Z=HE(M, V)
AES-Based Hashing [BBGRO09] Use AE_S as a blackbox _
(several SHA-3 candidates) (blockcipher-based hashing)

Why is this interesting?
@ AES-NI Instruction Set promises considerable speedup

@ Blockcipher-based hashing relatively well understood
with many security proofs in ideal cipher model (ICM)

Introduction AES and Hash Functions

Blockcipher-Based Hashing

The principal idea

~> Z = HE(M, V)

E:{0,1}% x {0,1}" — {0,1}"

o Blockcipher with k-bit key, operating on n-bit blocks.

o Compression function HE from n + k bits to n bits
(input consists of k bits message and n bits chaining variable).

Introduction AES and Hash Functions

Blockcipher-Based Hashing
Using AES

Vo > Z = HE(M, V)

Blockcipher Block-size Key-size =~ Number of

E n (bits) k (bits) Rounds
AES-128 128 128 10
AES-256 128 256 14

Rijndael-256 256 256 14

Introduction AES and Hash Functions

Blockcipher-Based Hashing

The principal idea, revisited

~> Z = HE(M, V)

E:{0,1}% x {0,1}" — {0,1}"

o Examples include MD5, SHA family, plus the (generic) PGV
compression functions.

Introduction AES and Hash Functions

Blockcipher-Based Hashing

The principal idea, revisited

M
Ik
T‘mz

Vi |_|jy;,

o Examples include MD5, SHA family, plus the (generic) PGV
compression functions.

o For instance the Davies—Meyer construction.

Introduction AES and Hash Functions

Blockcipher-Based Hashing

The principal idea, revisited

M
Ik
T‘mz

Vi |_|jy;,

o Assuming E is ideal, Davies—Meyer is optimally collision resistant.

Introduction AES and Hash Functions

Blockcipher-Based Hashing

The principal idea, revisited

M
|256
=l

sy
v 128 E j/II28 4

o Assuming E is ideal, Davies—Meyer is optimally collision resistant.

o When instantiated with e.g. AES-256,
it takes 26 operations to find a collision. Insufficient!

Introduction AES and Hash Functions

Blockcipher-Based Hashing

The principal idea, revisited

§en
V 7 77 WZ:HE(I\/I, V)

E:{0,1} x {0,1}" — {0,1}"

o Blockcipher with cn-bit key, operating on n-bit blocks.

o Compression function HE from (r 4+ m)n bits to rn bits
(using multiple calls to E) where r > 1.

Introduction AES and Hash Functions

Blockcipher-Based Hashing

The principal idea, revisited

—>
an

V —+> rr

_ yE
g - Z=HE(M, V)

E:{0,1} x {0,1}" — {0,1}"

o Blockcipher with cn-bit key, operating on n-bit blocks.

o Compression function HE from (r 4+ m)n bits to rn bits
(using multiple calls to E) where r > 1.

Introduction AES and Hash Functions

Blockcipher-Based Hashing

Using AES
mn r
V2 - Z=HE(M, V)

Blockcipher Block-size Key-size =~ Number of

E (bits) (bits) Rounds
AES-128 128 128 10
AES-256 128 256 14

Rijndael-256 256 256 14

Introduction AES and Hash Functions

lterated Hash Functions

Merkle-Damgard Transformation

Ml M2 Mg
an an an
VO rn H I{;l H m - H rn Z = Ve
MD-Iteration

From H : {0,1}(m+N" — 10,1} to HM : ({0,1}™)* — {0,1}""

Introduction Blockcipher-Based Schemes to Consider

Multi-Block Length Blockcipher-Based Schemes

This Work: A Performance Comparison

Blockcipher Variable-key Fixed-key
Constructions Constructions
AES-128 MDC-2, MJH, LP362

Peyrin et al.(l)

Abreast-DM, Hirose-DBL,
AES-256 Knudsen—Preneel, MJH-Double, n.a.
QPB-DBL, Peyrin et al.(ll)

LP231,
Rijndael-256 Davies—Meyer LANE*, Luffa*,
Shrimpton—Stam

Introduction [
Related Key Attacks (RKA) on AES

A formal definition of related key attacks [BK03,AFPW11] I

Introduction Caveat Emptor

Related Key Attacks (RKA) on AES

The ugly
A formal definition of related key attacks [BK03,AFPW11]

The bad
AES-192 and AES-256 are susceptible to meaningful RKA [BK09,BKN09]
o Casts doubt on modelling AES-192 and AES-256 as ideal ciphers.

o Davies—Meyer[AES-256] fails optimal security for certain
beyond-birthday properties.

Introduction Caveat Emptor

Related Key Attacks (RKA) on AES

The ugly
A formal definition of related key attacks [BK03,AFPW11]

The bad
AES-192 and AES-256 are susceptible to meaningful RKA [BK09,BKN09]
o Casts doubt on modelling AES-192 and AES-256 as ideal ciphers.

o Davies—Meyer[AES-256] fails optimal security for certain
beyond-birthday properties.

The good

No identified weaknesses against any of the schemes considered in this talk

Outline

@ Intel's AES Instruction Set
o AES and Rijndael
o AES-NI
o Old Lessons from Encryption Modes
o New Lessons for Hash Functions

Intel’s AES Instruction Set =~ AES-NI

AES and Rijndael 7
P | S Shet [

A 1
andl for memorizing 2
el 3
Initial Rounch

Inlermediate

11B=AES B

Fast
Aot
*-0i)=(a<< 1)@ (@;=1)116:00

HEHE

AIKIE
lo (x-y):logtx)u?ty) AN
Use (x+)=03 for 99 base 7]7 |7
S-Box (SRD) Ciphertexi 9
.SRD[a]:f(J(a)) Mix (olorns:

(@) 2™ prod M) | 2039

) Think 30 63" WY | (20137 (as

515 and 305 310 ool a1
LTk ot (o 5Lk
ooty 110 |° -gn'? i

t 000111) :*
togatt | n3
11000\ T
11110001 %]

(3
1
)
oottt |3 1o
°
°
[}

(Created by Jeff Moser)

Intel’s AES Instruction Set =~ AES-NI

AES-NI

o Goal: Fast and secure AES encryption and decryption

o Available Platforms: Intel Westmere-based (2010) and Sandy Bridge
processors (2011), AMD Bulldozer-based processors (2011)

Useful New AES Instructions
e AESENC performs a single round of encryption.
e AESENCLAST performs the last round of encryption.
e AESKEYGENASSIST is used for generating the round keys.

(For decryption available AESDEC, AESDECLAST and AESIMC)

Finally, PCLMULQDQ performs carry-less multiplication of two 64-bit
operands to an 128-bit output.

Intel's AES Instruction Set Old Lessons from Encryption Modes

Intel AES-NI Sample Library

For Intel Core i5 650 (3.2 GHz with AES-NI).

Key Schedule 1-Encryption 4-Encryption
Blockcipher (Seq. modes) (Par. modes)
cycles (cycles/byte)
AES-128 99.0 (6.2) 64.0 (4.0) 83.2 (1.3)
AES-256 124.5 (7.8) 86.4 (5.4) 108.8 (1.7)

Timing Modes of Encryption [G10,GK10,MMG10]
o Refers to CBC, ECB, etc.
o Intricate interleaving of AESENC calls.
o Key Scheduling is performed only once.

o Not included in the encryption timings.

Intel’s AES Instruction Set New Lessons for Hash Functions

AES-NI Timings for Hashing

Extensions (results in cycles, compiled using both gcc and icc)

Major Overhead: Frequent key-scheduling!

Blockcipher | 1K 2K 3K 4K | 1E 2E 3E 4E

AES-128 9r.7 126.1 163.4 226.7 | 60.2 606 67.7 847
AES-256 1255 1472 2026 287.2 | 82.0 83.0 93.6 113.9
Rijndael-256 | 291.6 316.6 412.6 570.3 | 182.9 219.2 281.4 3526

Intel’s AES Instruction Set New Lessons for Hash Functions

AES-NI Timings for Hashing

Extensions (results in cycles, compiled using both gcc and icc)

Major Overhead: Frequent key-scheduling!

Blockcipher | 1K 2K 3K 4K | 1E 2E 3E 4E

AES-128 9r.7 126.1 163.4 226.7 | 60.2 606 67.7 847
AES-256 1255 1472 2026 287.2 | 82.0 83.0 93.6 113.9
Rijndael-256 | 291.6 316.6 412.6 570.3 | 182.9 219.2 281.4 3526

Blockcipher ‘ 1K1E 2K2E 3K3E 4K4E 1K2E 1K3E 1KA4E
AES-128 107.4 149.2 200.0 2699 120.1 1353 137.8
AES-256 1528 178.1 249.7 3379 154.0 158.4 164.9

Rijndael-256 | 285.3 407.5 6205 867.3 312.0 373.3 463.7

Outline

(3 Hash Function Implementations
o Case Study I: Davies—Meyer
o Case Study Il: Quadratic-Polynomial-Based
o Overview of Results

Hash Function Implementations Case Study |: Davies—Meyer

Davies—Meyer
Using Rijndael-256, n = k = 256

M;
Ik

KS E — Vi1

Hash Function Implementations Case Study |: Davies—Meyer

Davies—Meyer
Using Rijndael-256, n = k = 256

M;
Ik

KS E — Vi1

n

V;

Conventional Implementation

o Requires one key-schedule and one encryption call
(possibly round functions interleaved for each call).

o The performance can be estimated with 1K1E.

Hash Function Implementations Case Study |: Davies—Meyer

Davies—Meyer

U%/ing Rijndael-256, n = k = 256

lll

M; KS E l Vit

l]l T
Mit L3N KS E —6— Viio

)) Vig
: : n
k l
]qur]‘ —>{ KS E —> Vi+j+1

Optimized Implementation (for MD-iteration)
o Run the j key-schedules in parallel followed by j encrpytion calls.

o j = 4 gives the most efficient result.
o The performance can be estimated to be in [4K4E ,4K+4 X 1E].

Hash Function Implementations Case Study |: Davies—Meyer

Davies—Meyer
Results (cycles/byte)

ln

k
M; KS E Vit
l]l
Mit L3N KS E —6— Viio
) Vig 1
: n
k
]qur]‘ —>{ KS E —> Vi+j+1

Compression Conventional Optimized
Function Estimate Achieved Speed | Estimate Achieved Speed

Davies—Meyer | 8.9 8.9 | [6.8,10.2] 8.7

Hash Function Implementations Case Study Il: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL

Using AES-256

E o 7
) |
Vi
vy A0 F > 2,
M —+

FIM, Vi, Vo, Z1) = Z1(VuZh + Vi) + M

Evaluating F

o Requires on GF(2") finite field multiplications.
o Relies on the PCLMULQDQ instruction.

Hash Function Implementations Case Study Il: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL

Using AES-256

FIM, Vi, Vo, Z1) = Z1(VuZh + Vi) + M

Conventional Implementation
o Calls the (full) compression function iteratively.
o Requires one key-schedule, one encryption call followed by two (full)
finite field multiplications.
o The performance can be estimated with 1K1E+¢ where € stands for
the time required for multiplications.

Hash Function Implementations Case Study Il: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL

Swapping the Inputs

n

EJ % Zl
n
%1
M n F LZQ
V2 n

F(M7 Vla V27Zl) = Zl(vlzl + M) + V2

Optimized Implementation (for MD-iteration)
o Interleaves the key-scheduling of round i + 1 with the two (sequential)
finite field multiplications of round i.
o The predicted performance of QPB-DBL is based on the 1K1E+¢
setting where ¢ stands for the time required for multiplications.

Hash Function Implementations Case Study Il: Quadratic-Polynomial-Based

Quadratic-Polynomial-Based DBL

Results (cycles/byte)

n

EJ % Zl
n
%1
M= F > 2
V2 n

F(M7 Vla V27zl) = Zl(vlzl + M) + V2

Compression Conventional Optimized
Function Estimate Achieved Speed | Estimate Achieved Speed

QPB-DBL | 95+¢ 15.8 | 95+e€ 141

Hash Function Implementations

Overview of Results

Our Timings
(cycles/byte)
. Building Key Predicted Achieved

Algorithm Block Scheduling Speed Range Speed
Abreast-DM AES-256 two 11.1+e€ 11.21
DM Rijndael-256 one [6.8,10.2] 8.69
Hirose-DBL AES-256 one, shared 9.6 9.82
Knudsen—Preneel AES-256 four 10.6 10.58
LANE* Rijndael-256 fixed 11.7 11.71
LP231 Rijndael-256 fixed 12.6 + ¢ 13.04
LP362 AES-128 fixed 11.8+¢ 12.09
Luffa® Rijndael-256 fixed 8.8+¢ 10.22
MDC-2 AES-128 two [9.3,11.7] + ¢ 10.00
MJH AES-128 one, shared 6.6 + ¢ 7.45
MJH-Double AES-256 one, shared 41+ € 4.82
QPB-DBL AES-256 one 95+¢€ 14.12
Peyrin et al.(i) AES-128 three, shared [12.5,16.3] 15.09
Peyrin et al.(ii) AES-256 three, shared [7.8,10.7] 8.75
Shrimpton-Stam Rijndael-256 fixed 12.6 12.39

Outline

1) Introduction
AES and Hash Functions
Blockcipher-Based Schemes to Consider
Caveat Emptor

2) Intel's AES Instruction Set
AES and Rijndael
AES-NI
Old Lessons from Encryption Modes
New Lessons for Hash Functions

3) Hash Function Implementations
Case Study |: Davies—Meyer
Case Study II: Quadratic-Polynomial-Based
Overview of Results

@ Conclusion

Conclusion

Conclusion
For Intel Core i5 650 (3.2 GHz with AES-NI).

Fast instantiations of provably secure bc-based hash functions,
using AES-NI achieving between 4 and 15 cycles per byte.

(vs. SHA-256: 13.90 and SHA-512: 10.47).

MJH-Double is the overall speed champion

(but its concrete security bound is lacking).

For blockcipher-based compression functions, DM is the fastest
algorithm with optimal security

In the permutation-based setting, the fastest is Luffa*.

Slightly changing the compression function can lead to performance
benefits without sacrificing provable security.

	Introduction
	AES and Hash Functions
	Blockcipher-Based Schemes to Consider
	Caveat Emptor

	Intel's AES Instruction Set
	AES and Rijndael
	AES-NI
	Old Lessons from Encryption Modes
	New Lessons for Hash Functions

	Hash Function Implementations
	Case Study I: Davies–Meyer
	Case Study II: Quadratic-Polynomial-Based
	Overview of Results

	Conclusion

